About The Drug Remodulin aka Treprostinil Sodium

ClusterMed

Find Remodulin side effects, uses, warnings, interactions and indications. Remodulin is also known as Treprostinil Sodium.

Remodulin

Remodulin Prescription Drug Bottle
About Remodulin aka Treprostinil Sodium

What's The Definition Of The Medical Condition Remodulin?

Clinical Pharmacology

CLINICAL PHARMACOLOGY Mechanism Of Action The major pharmacologic actions of treprostinil are direct vasodilation of pulmonary and systemic arterial vascular beds, and inhibition of platelet aggregation. Pharmacodynamics In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. Other studies have shown that treprostinil causes a dose-related negative inotropic and lusitropic effect. No major effects on cardiac conduction have been observed. Treprostinil produces vasodilation and tachycardia. Single doses of treprostinil up to 84 mcg by inhalation produce modest and short-lasting effects on QTc, but this is apt to be an artifact of the rapidly changing heart rate. Treprostinil administered by the subcutaneous or intravenous routes has the potential to generate concentrations many-fold greater than those generated via the inhaled route; the effect on the QTc interval when treprostinil is administered parenterally has not been established. Pharmacokinetics The pharmacokinetics of continuous subcutaneous Remodulin are linear over the dose range of 1.25 to 125 ng/kg/min (corresponding to plasma concentrations of about 15 pg/mL to 18,250 pg/mL) and can be described by a two-compartment model. Dose proportionality at infusion rates greater than 125 ng/kg/min has not been studied. Subcutaneous and intravenous administration of Remodulin demonstrated bioequivalence at steady state at a dose of 10 ng/kg/min. Absorption Remodulin is relatively rapidly and completely absorbed after subcutaneous infusion, with an absolute bioavailability approximating 100%. Steady-state concentrations occurred in approximately 10 hours. Concentrations in patients treated with an average dose of 9.3 ng/kg/min were approximately 2,000 pg/mL. Distribution The volume of distribution of the drug in the central compartment is approximately 14L/70 kg ideal body weight. Remodulin at in vitro concentrations ranging from 330-10,000 mcg/L was 91% bound to human plasma protein. Metabolism and Excretion Treprostinil is substantially metabolized by the liver, primarily by CYP2C8. In a study conducted in healthy volunteers using [14C] treprostinil, 78.6% and 13.4% of the subcutaneous dose was recovered in the urine and feces, respectively, over 10 days. Only 4% was excreted as unchanged treprostinil in the urine. Five metabolites were detected in the urine, ranging from 10.2% to 15.5% and representing 64.4% of the dose administered. Four of the metabolites are products of oxidation of the 3-hydroxyloctyl side chain and one is a glucuroconjugated derivative (treprostinil glucuronide). The identified metabolites do not appear to have activity. The elimination of treprostinil (following subcutaneous administration) is biphasic, with a terminal elimination half-life of approximately 4 hours using a two compartment model. Systemic clearance is approximately 30 L/hr for a 70 kg person. Based on in vitro studies treprostinil does not inhibit or induce major CYP enzymes [see DRUG INTERACTIONS]. Special Populations Hepatic Insufficiency In patients with portopulmonary hypertension and mild (n=4) or moderate (n=5) hepatic insufficiency, Remodulin at a subcutaneous dose of 10 ng/kg/min for 150 minutes had a Cmax that was 2-fold and 4-fold, respectively, and an AUC 0- that was 3-fold and 5-fold, respectively, values observed in healthy subjects. Clearance in patients with hepatic insufficiency was reduced by up to 80% compared to healthy adults. Renal Insufficiency No studies have been performed in patients with renal insufficiency, so no specific advice about dosing in such patients can be given. Although only 4% of the administered dose is excreted unchanged in the urine, the five identified metabolites are all excreted in the urine. Clinical Studies Clinical Trials In Pulmonary Arterial Hypertension (PAH) Two 12-week, multicenter, randomized, double-blind studies compared continuous subcutaneous infusion of Remodulin to placebo in a total of 470 patients with NYHA Class II (11%), III (81%), or IV (7%) pulmonary arterial hypertension (PAH). PAH was idiopathic/heritable in 58% of patients, associated with connective tissue diseases in 19%, and the result of congenital systemic-topulmonary shunts in 23%. The mean age was 45 (range 9 to 75 years). About 81% were female and 84% were Caucasian. Pulmonary hypertension had been diagnosed for a mean of 3.8 years. The primary endpoint of the studies was change in 6-minute walking distance, a standardmeasure of exercise capacity. There were many assessments of symptoms related to heart failure, but local discomfort and pain associated with Remodulin may have substantially unblended those assessments. The 6-minute walking distance and an associated subjective measurement of shortness of breath during the walk (Borg dyspnea score) were administered by a person not participating in other aspects of the study. Remodulin was administered as a subcutaneous infusion, described in Section 2, DOSAGE AND ADMINISTRATION, and the dose averaged 9.3 ng/kg/min at Week 12. Few subjects received doses > 40 ng/kg/min. Background therapy, determined by the investigators, could include anticoagulants, oral vasodilators, diuretics, digoxin, and oxygen but not an endothelin receptor antagonist or epoprostenol. The two studies were identical in design and conducted simultaneously, and the results were analyzed both pooled and individually. Hemodynamic Effects As shown in Table 5, chronic therapy with Remodulin resulted in small hemodynamic changes consistent with pulmonary and systemic vasodilation. Table 5: Hemodynamics during Chronic Administration of Remodulin in Patients with PAH in 12-Week Studies Hemodynamic Parameter Baseline Mean change from baseline at Week 12 Remodulin (N=204-231) Placebo (N=215-235) Remodulin (N=163-199) Placebo (N=182-215) CI (L/min/m²) 2.4 ± 0.88 2.2 ± 0.74 +0.12 ± 0.58* -0.06 ± 0.55 PAPm (mmHg) 62 ± 17.6 60 ± 14.8 -2.3 ± 7.3* +0.7 ± 8.5 RAPm (mmHg) 10 ± 5.7 10 ± 5.9 -0.5 ± 5.0* + 1.4 ± 4.8 PVRI (mmHg/L/min/m²) 26 ± 13 25 ± 13 -3.5 ± 8.2* + 1.2 ± 7.9 SVRI (mmHg/L/min/m²) 38 ± 15 39 ± 15 -3.5 ± 12* -0.80 ± 12 SvO2 (%) 62 ± 100 60 ± 11 +2.0 ± 10* -1.4 ± 8.8 SAPm (mmHg) 90 ± 14 91 ± 14 -1.7 ± 12 -1.0 ± 13 HR (bpm) 82 ± 13 82 ± 15 -0.5 ± 11 -0.8 ± 11 *Denotes statistically significant difference between Remodulin and placebo, p < 0.05. CI = cardiac index; PAPm = mean pulmonary arterial pressure; PVRI = pulmonary vascular resistance indexed; RAPm = mean right atrial pressure; SAPm = mean systemic arterial pressure; SVRI = systemic vascular resistance indexed; SvO2 = mixed venous oxygen saturation; HR = heart rate. Clinical Effects The effect of Remodulin on 6-minute walk, the primary end point of the 12-week studies, was small and did not achieve conventional levels of statistical significance. For the combined populations, the median change from baseline on Remodulin was 10 meters and the median change from baseline on placebo was 0 meters from a baseline of approximately 345 meters. Although it was not the primary endpoint of the study, the Borg dyspnea score was significantly improved by Remodulin during the 6-minute walk, and Remodulin also had a significant effect, compared with placebo, on an assessment that combined walking distance with the Borg dyspnea score. Remodulin also consistently improved indices of dyspnea, fatigue and signs and symptoms of pulmonary hypertension, but these indices were difficult to interpret in the context ofincomplete blinding to treatment assignment resulting from infusion site symptoms. Flolan-To-Remodulin Transition Study In an 8-week, multicenter, randomized, double-blind, placebo-controlled study, patients on stabledoses of Flolan were randomly withdrawn from Flolan to placebo or Remodulin. Fourteen Remodulin and 8 placebo patients completed the study. The primary endpoint of the study was the time to clinical deterioration, defined as either an increase in Flolan dose, hospitalization due to PAH, or death. No patients died during the study. During the study period, Remodulin effectively prevented clinical deterioration in patients transitioning from Flolan therapy compared to placebo (Figure 1). Thirteen of 14 patients in the Remodulin arm were able to transition from Flolan successfully, compared to only 1 of 8 patients in the placebo arm (p=0.0002). Figure 1: Time to Clinical Deterioration for PAH Patients Transitioned from Flolan to Remodulin or Placebo in an 8-Week Study

Drug Description

Find Lowest Prices on REMODULIN® (treprostinil) Injection DESCRIPTION Remodulin (treprostinil) Injection is a sterile solution of treprostinil formulated for subcutaneous or intravenous administration. Remodulin is supplied in 20 mL multidose vials in four strengths, containing 20 mg, 50 mg, 100 mg, or 200 mg (1 mg/mL, 2.5 mg/mL, 5 mg/mL or 10 mg/mL) of treprostinil. Each mL also contains 5.3 mg sodium chloride (except for the 10 mg/mL strength which contains 4.0 mg sodium chloride), 3 mg metacresol, 6.3 mg sodium citrate, and water for injection. Sodium hydroxide and hydrochloric acid may be added to adjust pH between 6.0 and 7.2. Treprostinil is chemically stable at room temperature and neutral pH. Treprostinil is (1R,2R,3aS,9aS)-[[2,3,3a,4,9,9a-Hexahydro-2-hydroxy-1-[(3S)-3-hydroxyoctyl]-1Hbenz[ f]inden-5-yl]oxy]acetic acid. Treprostinil has a molecular weight of 390.52 and a molecular formula of C23H34O5. The structural formula of treprostinil is: Sterile Diluent for Remodulin is a high-pH (pH~10.4) glycine diluent supplied in a 50 mL vial containing 50 mL of Sterile Diluent for Remodulin. Each vial contains 94 mg glycine, 73.3 mg sodium chloride, sodium hydroxide (to adjust pH), and water for injection.

Indications & Dosage

INDICATIONS Pulmonary Arterial Hypertension Remodulin is indicated for the treatment of pulmonary arterial hypertension (PAH) (WHO Group 1) to diminish symptoms associated with exercise. Studies establishing effectiveness included patients with NYHA Functional Class II-IV symptoms and etiologies of idiopathic or heritable PAH (58%), PAH associated with congenital systemic-to-pulmonary shunts (23%), or PAH associated with connective tissue diseases (19%) [see Clinical Studies]. It may be administered as a continuous subcutaneous infusion or continuous intravenous (IV) infusion; however, because of the risks associated with chronic indwelling central venous catheters, including serious blood stream infections (BSIs), reserve continuous intravenous infusion for patients who are intolerant of the subcutaneous route, or in whom these risks areconsidered warranted [see WARNINGS AND PRECAUTIONS]. Pulmonary Arterial Hypertension In Patients Requiring Transition from Flolan® In patients with pulmonary arterial hypertension requiring transition from Flolan (epoprostenol sodium), Remodulin is indicated to diminish the rate of clinical deterioration. Consider the risks and benefits of each drug prior to transition. DOSAGE AND ADMINISTRATION General Remodulin can be administered without further dilution for subcutaneous administration, or diluted for intravenous infusion with Sterile Diluent for Remodulin or similar approved high-pH glycine diluent (e.g. Sterile Diluent for Flolan or Sterile Diluent for Epoprostenol Sodium), Sterile Water for Injection, or 0.9% Sodium Chloride Injection prior to administration. See Table 1 below for storage and administration time limits for the different diluents. Table 1: Selection of Diluent Route Diluent Storage limits Administration limits SC None See HOW SUPPLIED Section 72 hours at 37°C IV Sterile Diluent for Remodulin Sterile Diluent for Flolan Sterile Diluent for Epoprostenol Sodium 14 days at room temperature 48 hours at 40 °C Sterile water for injection 0.9% Sodium Chloride for injection 4 hours at room temperature or 24 hours refrigerated 48 hours at 40°C Initial Dose For Patients New To Prostacyclin Infusion Therapy Remodulin is indicated for subcutaneous (SC) or intravenous (IV) use only as a continuous infusion. Remodulin is preferably infused subcutaneously, but can be administered by a central intravenous line if the subcutaneous route is not tolerated, because of severe site pain or reaction. The infusion rate is initiated at 1.25 ng/kg/min. If this initial dose cannot be tolerated because of systemic effects, reduce the infusion rate to 0.625 ng/kg/min. Dosage Adjustments The goal of chronic dosage adjustments is to establish a dose at which PAH symptoms are improved, while minimizing excessive pharmacologic effects of Remodulin (headache, nausea, emesis, restlessness, anxiety and infusion site pain or reaction). The infusion rate should be increased in increments of 1.25 ng/kg/min per week for the first four weeks of treatment and then 2.5 ng/kg/min per week for the remaining duration of infusion, depending on clinical response. Dosage adjustments may be undertaken more often if tolerated. Avoid abrupt cessation of infusion [see WARNINGS AND PRECAUTIONS]. Restarting a Remodulin infusion within a few hours after an interruption can be done using the same dose rate. Interruptions for longer periods may require the dose of Remodulin to be re-titrated. Patients With Hepatic Insufficiency In patients with mild or moderate hepatic insufficiency, decrease the initial dose of Remodulin to 0.625 ng/kg/min ideal body weight. Remodulin has not been studied in patients with severe hepatic insufficiency [see WARNINGS AND PRECAUTIONS, Use In Specific Populations and CLINICAL PHARMACOLOGY]. Administration Inspect parenteral drug products for particulate matter and discoloration prior to administration whenever solution and container permit. If either particulate matter or discoloration is noted, do not use. Subcutaneous Infusion Remodulin is administered subcutaneously by continuous infusion without further dilution, via a subcutaneous catheter, using an infusion pump designed for subcutaneous drug delivery. To avoid potential interruptions in drug delivery, the patient must have immediate access to a backup infusion pump and subcutaneous infusion sets. The ambulatory infusion pump used to administer Remodulin should: (1) be small and lightweight, (2) be adjustable to approximately 0.002 mL/hr, (3) have occlusion/no delivery, low battery, programming error and motor malfunction alarms, (4) have delivery accuracy of ±6% or better and (5) be positive pressure driven. The reservoir should be made of polyvinyl chloride, polypropylene or glass. Remodulin is administered subcutaneously by continuous infusion at a calculated subcutaneous infusion rate (mL/hr) based on a patient's dose (ng/kg/min), weight (kg), and the vial strength (mg/mL) of Remodulin being used. During use, a single reservoir (syringe) of undiluted Remodulin can be administered up to 72 hours at 37°C. The subcutaneous infusion rate is calculated using the following formula: Subcutaneous Infusion Rate (mL/hr) = Dose (ng/kg/min) x Weight (kg) x 0.00006* Remodulin Vial Strength (mg/mL) *Conversion factor of 0.00006 = 60 min/hour x 0.000001 mg/ng Example calculations for Subcutaneous Infusion are as follows: Example 1: For a 60 kg person at the recommended initial dose of 1.25 ng/kg/min using the 1 mg/mL Remodulin, the infusion rate would be calculated as follows: Subcutaneous Infusion Rate (mL/hr) = 1.25 ng/kg/min x 60 kg x 0.00006 = 0.005 mL/hr 1 mg/mL Example 2: For a 65 kg person at a dose of 40 ng/kg/min using the 5 mg/mL Remodulin, the infusion rate would be calculated as follows: Subcutaneous Infusion Rate (mL/hr) = 40 ng/kg/min x 65 kg x 0.00006 = 0.031 mL/hr 5 mg/mL Intravenous Infusion Diluted Remodulin is administered intravenously by continuous infusion via a surgically placed indwelling central venous catheter using an infusion pump designed for intravenous drug delivery. If clinically necessary, a temporary peripheral intravenous cannula, preferably placed in a large vein, may be used for short term administration of Remodulin. Use of a peripheral intravenous infusion for more than a few hours may be associated with an increased risk of thrombophlebitis. To avoid potential interruptions in drug delivery, the patient must have immediate access to a backup infusion pump and infusion sets. The ambulatory infusion pump used to administer Remodulin should: (1) be small and lightweight, (2) have occlusion/no delivery, low battery, programming error and motor malfunction alarms, (3) have delivery accuracy of ±6% or better of the hourly dose, and (4) be positive pressure driven. The reservoir should be made of polyvinyl chloride, polypropylene or glass. Infusion sets with an in-line 0.22 or 0.2 micron pore size filter should be used. Diluted Remodulin has been shown to be stable at ambient temperature when stored for up to 14 days using high-pH glycine diluent at concentrations as low as 0.004 mg/mL (4,000 ng/mL). Select the intravenous infusion rate to allow for a desired infusion period length of up to 48 hours between system changeovers. Typical intravenous infusion system reservoirs have volumes of 50 or 100 mL. With this selected intravenous infusion rate (mL/hr) and the patient's dose (ng/kg/min) and weight (kg), the diluted intravenous Remodulin concentration (mg/mL) can be calculated using the following formula: Step 1 Diluted Intravenous Remodulin Concentration (mg/mL) = Dose (ng/kg/min) x Weight (kg) x 0.00006 Intravenous Infusion Rate (mL/hr) The volume of Remodulin Injection needed to make the required diluted intravenous Remodulin concentration for the given reservoir size can then be calculated using the following formula: Step 2 Volume of Remodulin Injection (mL) = Diluted Intravenous Remodulin Concentration (mg/mL) x Total Volume of Diluted Remodulin Solution in Reservoir (mL) Remodulin Vial Strength (mg/mL) The calculated volume of Remodulin Injection is then added to the reservoir along with the sufficient volume of diluent to achieve the desired total volume in the reservoir. Example calculations for Intravenous Infusion are as follows: Example 3: For a 60 kg person at a dose of 5 ng/kg/min, with a predetermined intravenous infusion rate of 1 mL/hr and a reservoir of 50 mL, the diluted intravenous Remodulin concentration would be calculated as follows: Step 1 Diluted Intravenous Remodulin Concentration (mg/mL)= 5 ng/kg/min x 60 kg x 0.00006 = 0.018mg/mL (18,000 ng/mL) 1 mL/hr The volume of Remodulin Injection (using 1 mg/mL Vial Strength) needed for a total diluted Remodulin concentration of 0.018 mg/mL and a total volume of 50 mL would be calculated as follows: Step 2 Amount of Remodulin Injection (mL) = 0.018 mg/mL 1 mg/mL x 50 mL = 0.9 mL 1 mg/mL The diluted intravenous Remodulin concentration for the person in Example 3 would thus be prepared by adding 0.9 mL of 1 mg/mL Remodulin Injection to a suitable reservoir along with a sufficient volume of diluent to achieve a total volume of 50 mL in the reservoir. The pump flow rate for this example would be set at 1 mL/hr. Example 4: For a 75 kg person at a dose of 30 ng/kg/min, with a predetermined intravenous infusion rate of 2 mL/hr, and a reservoir of 100 mL, the diluted intravenous Remodulin concentration would be calculated as follows: Step 1 Diluted Intravenous Remodulin Concentration (mg/mL) 30 ng/kg/min x 75 kg x 0.00006 = 0.0675 mg/mL (67,500 ng/mL) =2 mL/hr The volume of Remodulin Injection (using 2.5 mg/mL Vial Strength) needed for a total diluted Remodulin concentration of 0.0675 mg/mL and a total volume of 100 mL would be calculated as follows: Step 2 Amount of Remodulin Injection(mL) = 0.0675 mg/mL 2.5 mg/mL x 100 mL = 2.7 mL 2.5 mg/mL The diluted intravenous Remodulin concentration for the person in Example 4 would thus be prepared by adding 2.7 mL of 2.5 mg/mL Remodulin Injection to a suitable reservoir along with a sufficient volume of diluent to achieve a total volume of 100 mL in the reservoir. The pump flow rate for this example would be set at 2 mL/hr. Patients Requiring Transition From Flolan Transition from Flolan to Remodulin is accomplished by initiating the infusion of Remodulin and increasing it, while simultaneously reducing the dose of intravenous Flolan. The transition to Remodulin should take place in a hospital with constant observation of response (e.g., walk distance and signs and symptoms of disease progression). Initiate Remodulin at a recommended dose of 10% of the current Flolan dose, and then escalate as the Flolan dose is decreased (see Table 2 for recommended dose titrations). Patients are individually titrated to a dose that allows transition from Flolan therapy to Remodulin while balancing prostacyclin-limiting adverse events. Increases in the patient's symptoms of PAH should be first treated with increases in the dose of Remodulin. Side effects normally associated with prostacyclin and prostacyclin analogs are to be first treated by decreasing the dose of Flolan. Table 2: Recommended Transition Dose Changes Step Flolan Dose Remodulin Dose 1 Unchanged 10% Starting Flolan Dose 2 80% Starting Flolan Dose 30% Starting Flolan Dose 3 60% Starting Flolan Dose 50% Starting Flolan Dose 4 40% Starting Flolan Dose 70% Starting Flolan Dose 5 20% Starting Flolan Dose 90% Starting Flolan Dose 6 5% Starting Flolan Dose 110% Starting Flolan Dose 7 0 110% Starting Flolan Dose + additional 5-10% increments as needed HOW SUPPLIED Dosage Forms And Strengths 20-mL vial containing 20 mg treprostinil (1 mg per mL). 20-mL vial containing 50 mg treprostinil (2.5 mg per mL). 20-mL vial containing 100 mg treprostinil (5 mg per mL). 20-mL vial containing 200 mg treprostinil (10 mg per mL). Storage And Handling Remodulin is supplied in 20-mL multidose vials as sterile solutions in water for injection, individually packaged in cartons. Unopened vials of Remodulin are stable until the date indicated when stored at 25°C (77°F), with excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. A single vial of Remodulin should be used for no more than 30 days after the initial introduction into the vial. Remodulin Injection is supplied as: Remodulin Concentration NDC 66302-xxx-xx 20 mg / 20 mL 1 mg/ mL 101-01 50 mg / 20 mL 2.5 mg/ mL 102-01 100 mg / 20 mL 5 mg/ mL 105-01 200 mg / 20 mL 10 mg/ mL 110-01 Sterile Diluent for Remodulin is supplied separately as: 50 mL vial, carton of 1 (NDC 66302-150-50). REMODULIN manufactured for: United Therapeutics Corp., Research Triangle Park, NC 27709. Revised: Dec 2014

Medication Guide

PATIENT INFORMATION Patients receiving Remodulin should be given the following information: Remodulin is infused continuously through a subcutaneous or surgically placed indwelling central venous catheter, via an infusion pump. Patients receiving intravenous infusion should use an infusion set with an inline filter. Therapy with Remodulin will be needed for prolonged periods, possibly years, and the patient's ability to accept and care for a catheter and to use an infusion pump should be carefully considered. In order to reduce the risk of infection, aseptic technique must be used in the preparation and administration of Remodulin. Additionally, patients should be aware that subsequent disease management may require the initiation of an alternative intravenous prostacyclin therapy, Flolan (epoprostenol sodium).

Overdosage & Contraindications

OVERDOSE Signs and symptoms of overdose with Remodulin during clinical trials are extensions of its dose-limiting pharmacologic effects and include flushing, headache, hypotension, nausea, vomiting, and diarrhea. Most events were self-limiting and resolved with reduction or withholding of Remodulin. In controlled clinical trials, seven patients received some level of overdose and in open-label follow-on treatment seven additional patients received an overdose; these occurrences resulted from accidental bolus administration of Remodulin, errors in pump programmed rate of administration, and prescription of an incorrect dose. In only two cases did excess delivery of Remodulin produce an event of substantial hemodynamic concern (hypotension, near-syncope). One pediatric patient was accidentally administered 7.5 mg of Remodulin via a central venous catheter. Symptoms included flushing, headache, nausea, vomiting, hypotension and seizure-like activity with loss of consciousness lasting several minutes. The patient subsequently recovered. CONTRAINDICATIONS None

Side Effects & Drug Interactions

SIDE EFFECTS The following adverse reactions are discussed elsewhere in labeling: Infections associated with intravenous administration [see WARNINGS AND PRECAUTIONS]. Clinical Trials Experience Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. Adverse Events with Subcutaneously Administered Remodulin Patients receiving Remodulin as a subcutaneous infusion reported a wide range of adverse events, many potentially related to the underlying disease (dyspnea, fatigue, chest pain, right ventricular heart failure, and pallor). During clinical trials with subcutaneous infusion of Remodulin, infusion site pain and reaction were the most common adverse events among those treated with Remodulin. Infusion site reaction was defined as any local adverse event other than pain or bleeding/bruising at the infusion site and included symptoms such as erythema, induration or rash. Infusion site reactions were sometimes severe and could lead to discontinuation of treatment. Table 3: Percentages of subjects reporting subcutaneous infusion site adverse events Reaction Pain Placebo Remodulin Placebo Remodulin Severe 1 38 2 39 Requiring narcotics* NA† NA† 1 32 Leading to discontinuation 0 3 0 7 * based on prescriptions for narcotics, not actual use † medications used to treat infusion site pain were not distinguished from those used to treat site reactions Other adverse events included diarrhea, jaw pain, edema, vasodilatation and nausea, and these are generally considered to be related to the pharmacologic effects of Remodulin, whether administered subcutaneously or intravenously. Adverse Reactions during Chronic Dosing Table 4 lists adverse reactions defined by a rate of at least 3% more frequent in patients treated with subcutaneous Remodulin than with placebo in controlled trials in PAH. Table 4: Adverse Reactions in Controlled 12-Week Studies of Subcutaneous Remodulin and at least 3% more frequent than on Placebo. Adverse Reaction Remodulin (N=236) Percent of Patients Placebo (N=233) Percent of Patients Infusion Site Pain 85 27 Infusion Site Reaction 83 27 Headache 27 23 Diarrhea 25 16 Nausea 22 18 Rash 14 11 Jaw Pain 13 5 Vasodilatation 11 5 Edema 9 3 Reported adverse reactions (at least 3% more frequent on drug than on placebo) are included except those too general to be informative, and those not plausibly attributable to the use of the drug, because they were associated with the condition being treated or are very common in the treated population. While hypotension occurred in both groups, the event was experienced twice as frequently in the Remodulin group as compared to the placebo group (4% in Remodulin treatment group verses 2% in placebo-controlled group). As a potent vasodilator, hypotension is possible with the administration of Remodulin. The safety of Remodulin was also studied in a long-term, open-label extension study in which 860 patients were dosed for a mean duration of 1.6 years, with a maximum exposure of 4.6 years. Twenty-nine (29%) percent achieved a dose of at least 40 ng/kg/min (max: 290 ng/kg/min). The safety profile during this chronic dosing study was similar to that observed in the 12-week placebo controlled study except for the following suspected adverse drug reactions (occurring in at least 3% of patients): anorexia, vomiting, infusion site infection, asthenia, and abdominal pain. Adverse Events Attributable to the Drug Delivery System In controlled studies of Remodulin administered subcutaneously, there were no reports of infection related to the drug delivery system. There were 187 infusion system complications reported in 28% of patients (23% Remodulin, 33% placebo); 173 (93%) were pump related and 14 (7%) related to the infusion set. Eight of these patients (4 Remodulin, 4 Placebo) reported non-serious adverse events resulting from infusion system complications. Adverse events resulting from problems with the delivery systems were typically related to either symptoms of excess Remodulin (e.g., nausea) or return of PAH symptoms (e.g., dyspnea). These events were generally resolved by correcting the delivery system pump or infusion set problem such as replacing the syringe or battery, reprogramming the pump, or straightening a crimped infusion line. Adverse events resulting from problems with the delivery system did not lead to clinical instability or rapid deterioration. In addition to these adverse events due to the drug delivery system during subcutaneous administration, the following adverse events may be attributable to the IV mode of infusion including arm swelling, paresthesias, hematoma and pain [see WARNINGS AND PRECAUTIONS]. Post-Marketing Experience In addition to adverse reactions reported from clinical trials, the following events have been identified during post-approval use of Remodulin. Because they are reported voluntarily from a population of unknown size, estimates of frequency cannot be made. The following events have been chosen for inclusion because of a combination of their seriousness, frequency of reporting, and potential connection to Remodulin. These events are thrombophlebitis associated with peripheral intravenous infusion, thrombocytopenia bone pain, pruritus and dizziness. In addition, generalized rashes, sometimes macular or papular in nature, and cellulitis have been infrequently reported. DRUG INTERACTIONS Pharmacokinetic/pharmacodynamic interaction studies have been conducted with treprostinil administered subcutaneously (Remodulin) and orally (treprostinil diethanolamine). Pharmacodynamics Antihypertensive Agents Or Other Vasodilators Concomitant administration of Remodulin with diuretics, antihypertensive agents or other vasodilators may increase the risk of symptomatic hypotension. Anticoagulants Since treprostinil inhibits platelet aggregation, there may be an increased risk of bleeding, particularly among patients receiving anticoagulants. Pharmacokinetics Bosentan In a human pharmacokinetic study conducted with bosentan (250 mg/day) and an oral formulation of treprostinil (treprostinil diethanolamine), no pharmacokinetic interactions between treprostinil and bosentan were observed. Sildenafil In a human pharmacokinetic study conducted with sildenafil (60 mg/day) and an oral formulation of treprostinil (treprostinil diethanolamine), no pharmacokinetic interactions between treprostinil and sildenafil were observed. Effect Of Treprostinil On Cytochrome P450 Enzymes In vitro studies of human hepatic microsomes showed that treprostinil does not inhibit cytochrome P450 (CYP) isoenzymes CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A. Additionally, treprostinil does not induce cytochrome P450 isoenzymes CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A. Thus Remodulin is not expected to alter the pharmacokinetics of compounds metabolized by CYP enzymes. Effect Of Cytochrome P450 Inhibitors And Inducers On Treprostinil Human pharmacokinetic studies with an oral formulation of treprostinil (treprostinil diethanolamine) indicated that co-administration of the cytochrome P450 (CYP) 2C8 enzyme inhibitor gemfibrozil increases exposure (both Cmax and AUC) to treprostinil. Co-administration of the CYP2C8 enzyme inducer rifampin decreases exposure to treprostinil. It has not been determined if the safety and efficacy of treprostinil by the parenteral (subcutaneously or intravenously) route are altered by inhibitors or inducers of CYP2C8 [see WARNINGS AND PRECAUTIONS]. Remodulin has not been studied in conjunction with Flolan or Tracleer® (bosentan). Effect Of Other Drugs On Treprostinil Drug interaction studies have been carried out with treprostinil (oral or subcutaneous) coadministered with acetaminophen (4 g/day), warfarin (25 mg/day), and fluconazole (200 mg/day), respectively in healthy volunteers. These studies did not show a clinically significant effect on the pharmacokinetics of treprostinil. Treprostinil does not affect the pharmacokinetics or pharmacodynamics of warfarin. The pharmacokinetics of R- and S- warfarin and the INR in healthy subjects given a single 25 mg dose of warfarin were unaffected by continuous subcutaneous infusion of treprostinil at an infusion rate of 10 ng/kg/min.

Warnings & Precautions

WARNINGS Included as part of the PRECAUTIONS section. PRECAUTIONS Risk Of Catheter-Related Bloodstream Infection Chronic intravenous infusions of Remodulin are delivered using an indwelling central venous catheter. This route is associated with the risk of blood stream infections (BSIs) and sepsis, which may be fatal. Therefore, continuous subcutaneous infusion (undiluted) is the preferred mode of administration. In an open-label study of IV treprostinil (n=47), there were seven catheter-related line infections during approximately 35 patient years, or about 1 BSI event per 5 years of use. A CDC survey of seven sites that used IV treprostinil for the treatment of PAH found approximately 1 BSI (defined as any positive blood culture) event per 3 years of use. Administration of IV Remodulin with a high pH glycine diluent has been associated with a lower incidence of BSIs when compared to neutral diluents (sterile water, 0.9% sodium chloride) when used along with catheter care guidelines. Worsening PAH Upon Abrupt Withdrawal Or Sudden Large Dose Reduction Avoid abrupt withdrawal or sudden large reductions in dosage of Remodulin, which may result in worsening of PAH symptoms. Patients With Hepatic Or Renal Insufficiency Titrate slowly in patients with hepatic or renal insufficiency, because such patients will likely be exposed to greater systemic concentrations relative to patients with normal hepatic or renal function [see DOSAGE AND ADMINISTRATION, Use In Specific Populations, and CLINICAL PHARMACOLOGY]. Effect Of Other Drugs On Treprostinil Co-administration of a cytochrome P450 (CYP) 2C8 enzyme inhibitor (e.g., gemfibrozil) increases exposure (both Cmax and AUC) to treprostinil. Co-administration of a CYP2C8 enzyme inducer (e.g., rifampin) decreases exposure to treprostinil [see DRUG INTERACTIONS and CLINICAL PHARMACOLOGY]. Nonclinical Toxicology Carcinogenesis, Mutagenesis, Impairment Of Fertility Long-term studies have not been performed to evaluate the carcinogenic potential of treprostinil. In vitro and in vivo genetic toxicology studies did not demonstrate any mutagenic or clastogenic effects of treprostinil. Treprostinil did not affect fertility or mating performance of male or female rats given continuous subcutaneous infusions at rates of up to 450 ng treprostinil/kg/min [about 59 times the recommended starting human rate of infusion (1.25 ng/kg/min) and about 8 times the average rate (9.3 ng/kg/min) achieved in clinical trials, on a ng/m² basis]. In this study, males were dosed from 10 weeks prior to mating and through the 2-week mating period. Females were dosed from 2 weeks prior to mating until gestational day 6. Use In Specific Populations Pregnancy Pregnancy Category B - In pregnant rats, continuous subcutaneous infusions of treprostinil during organogenesis and late gestational development, at rates as high as 900 ng treprostinil/kg/min (about 117 times the starting human rate of infusion, on a ng/m² basis and about 16 times the average rate achieved in clinical trials), resulted in no evidence of harm to the fetus. In pregnant rabbits, effects of continuous subcutaneous infusions of treprostinil during organogenesis were limited to an increased incidence of fetal skeletal variations (bilateral full rib or right rudimentary rib on lumbar 1) associated with maternal toxicity (reduction in body weight and food consumption) at an infusion rate of 150 ng treprostinil/kg/min (about 41 times the starting human rate of infusion, on a ng/m² basis, and 5 times the average rate used in clinical trials). In rats, continuous subcutaneous infusion of treprostinil from implantation to the end of lactation, at rates of up to 450 ng treprostinil/kg/min, did not affect the growth and development of offspring. Animal reproduction studies are not always predictive of human response. Labor And Delivery No treprostinil treatment-related effects on labor and delivery were seen in animal studies. The effect of treprostinil sodium on labor and delivery in humans is unknown. Nursing Mothers It is not known whether treprostinil is excreted in human milk or absorbed systemically after ingestion. Many drugs are excreted in human milk. Pediatric Use Safety and effectiveness in pediatric patients have not been established. Clinical studies of Remodulin did not include sufficient numbers of patients aged ≤ 16 years to determine whether they respond differently from older patients. Geriatric Use Clinical studies of Remodulin did not include sufficient numbers of patients aged 65 and over to determine whether they respond differently from younger patients. In general, dose selection for an elderly patient should be cautious, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Patients With Hepatic Insufficiency Remodulin clearance is reduced in patients with hepatic insufficiency. In patients with mild or moderate hepatic insufficiency, decrease the initial dose of Remodulin to 0.625 ng/kg/min ideal body weight, and monitor closely. Remodulin has not been studied in patients with severe hepatic insufficiency [see DOSAGE AND ADMINISTRATION, WARNINGS AND PRECAUTIONS and CLINICAL PHARMACOLOGY]. Patients With Renal Insufficiency No studies have been performed in patients with renal insufficiency. No specific advice about dosing in patients with renal impairment can be given [see CLINICAL PHARMACOLOGY].

More Medical Conditions

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Medical Conditions Definitions Of The Day